Mineralocorticoid potency steroids

Pharmacological blockade of the mineralocorticoid receptor (MR) ameliorates end-organ damage in chronic heart failure. However, the clinical use of available steroidal MR antagonists is restricted because of concomitant hyperkalemia especially in patients with diminished kidney function. We have recently identified a novel nonsteroidal MR antagonist, finerenone, which uniquely combines potency and selectivity toward MR. Here, we investigated the tissue distribution and chronic cardiorenal end-organ protection of finerenone in comparison to the steroidal MR antagonist, eplerenone, in 2 different preclinical rat disease models. Quantitative whole-body autoradiography revealed that [C]-labeled finerenone equally distributes into rat cardiac and renal tissues. Finerenone treatment prevented deoxycorticosterone acetate-/salt-challenged rats from functional as well as structural heart and kidney damage at dosages not reducing systemic blood pressure. Finerenone reduced cardiac hypertrophy, plasma prohormone of brain natriuretic peptide, and proteinuria more efficiently than eplerenone when comparing equinatriuretic doses. In rats that developed chronic heart failure after coronary artery ligation, finerenone (1 mg·kg·d), but not eplerenone (100 mg·kg·d) improved systolic and diastolic left ventricular function and reduced plasma prohormone of brain natriuretic peptide levels. We conclude that finerenone may offer end-organ protection with a reduced risk of electrolyte disturbances.

Corticosteroids have been used as drug treatment for some time. Lewis Sarett of Merck & Co. was the first to synthesize cortisone, using a complicated 36-step process that started with deoxycholic acid, which was extracted from ox bile . [43] The low efficiency of converting deoxycholic acid into cortisone led to a cost of US $200 per gram. Russell Marker , at Syntex , discovered a much cheaper and more convenient starting material, diosgenin from wild Mexican yams . His conversion of diosgenin into progesterone by a four-step process now known as Marker degradation was an important step in mass production of all steroidal hormones, including cortisone and chemicals used in hormonal contraception . [44] In 1952, . Peterson and . Murray of Upjohn developed a process that used Rhizopus mold to oxidize progesterone into a compound that was readily converted to cortisone. [45] The ability to cheaply synthesize large quantities of cortisone from the diosgenin in yams resulted in a rapid drop in price to US $6 per gram, falling to $ per gram by 1980. Percy Julian's research also aided progress in the field. [46] The exact nature of cortisone's anti-inflammatory action remained a mystery for years after, however, until the leukocyte adhesion cascade and the role of phospholipase A2 in the production of prostaglandins and leukotrienes was fully understood in the early 1980s.

Mineralocorticoid potency steroids

mineralocorticoid potency steroids


mineralocorticoid potency steroidsmineralocorticoid potency steroidsmineralocorticoid potency steroidsmineralocorticoid potency steroidsmineralocorticoid potency steroids